Computational Theory of Polynomial Ideals
ثبت نشده
چکیده
We provide methods to do explicit calculations in a polynomial ring in finitely many variables over a field. We develop algorithms to compute quotients of ideals, the radical of an ideal and a primary decomposition of an ideal. We also present methods to solve explicit tasks such as testing for prime ideals or identical ideals.
منابع مشابه
A New Computational Approach to Ideal Theory in Number Fields
Let K be the number field determined by a monic irreducible polynomial f(x) with integer coefficients. In previous papers we parameterized the prime ideals of K in terms of certain invariants attached to Newton polygons of higher order of f(x). In this paper we show how to carry out the basic operations on fractional ideals of K in terms of these constructive representations of the prime ideals...
متن کاملHadamard ideals and Hadamard matrices with circulant core
Computational Algebra methods have been used successfully in various problems in many fields of Mathematics. Computational Algebra encompasses a set of powerful algorithms for studying ideals in polynomial rings and solving systems of nonlinear polynomial equations efficiently. The theory of Gröbner bases is a cornerstone of Computational Algebra, since it provides us with a constructive way of...
متن کاملFinding binomials in polynomial ideals
*Correspondence: [email protected] 2Otto-von-Guericke Universität, Magdeburg, Germany Full list of author information is available at the end of the article Abstract We describe an algorithm which finds binomials in a given ideal I ⊂ Q[x1, . . . , xn] and in particular decides whether binomials exist in I at all. Binomials in polynomial ideals can be well hidden. For example, the lowest degr...
متن کاملExploiting chordal structure in polynomial ideals: a Gröbner bases approach
Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry, and in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in term...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015